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A method is presented for the description of dynamic shape properties of molecular 
configurations confined to a domain of the metric nuclear configuration space M. The 
method is based on the shape groups of formal three-dimensional bodies associated with 
a continuum of all shape representations (for example, all isodensity surfaces of molecular 
electron distributions) occurring within a selected domain F of M. The bodies of the 
first type are minimal 3D bodies which contain all isodensity surfaces G(a, K) of a 
given density value a which occur for configurations K within domain F, whereas 
bodies of the second type are maximal 3D bodies contained within all isodensity surfaces 
G(a, K) within domain F. The boundary surfaces of these bodies lead to the concepts 
of envelope shape and core shape for families of nuclear configurations. The differences 
of the shape groups as well as the volumes of these bodies provide a dynamic shape 
as well as dynamic size characterization of nonrigid molecules. Special emphasis is 
given to configurational domains defined by various energy bounds (level sets), symmetry 
properties (such as chirality), and the invariance domains of deformations preserving 
chemical identity (catchment regions). 

1. Introduction 

The analysis of shapes of molecules is of fundamental importance in both 
theoretical and applied chemistry. Much of the current research is focused on 
various applications in drug design, where both relatively small organic compounds 
as well as macromolecules such as biopolymers are of interest [1-10]. Molecular 
shape is not a static concept, since molecules themselves are dynamic, nonrigid 
entities. Although shape characterization of static molecular models is a valuable 
approach, nevertheless, models of shape description which take into account the 
nonrigidity of molecules provide more insight. The dynamic shape space model 
DSS [11] has been proposed as a systematic framework for a dynamic shape 
characterization of molecules, formulated within the nuclear configuration space 
model. In this general model, the 3D shape variations of molecules is monitored 
within the space of intemal configurations M (a metric space with elements of all 
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the possible relative nuclear arrangements for a given overall stoichiometry). Shape 
is regarded as a function of the changes of nuclear configurations K, as well as a 
function of some parameters of the chosen shape representation P. For example, a 
shape representation P may be chosen as an electronic isodensity contour G(a, K) 
for a given contour density value a and nuclear configuration K. Within the shape 
group technique [12, 13], the local curvature domains of the contour surface G(a, K) 
are identified, where the local extreme curvatures are compared to a reference 
curvature b. In this case, the parameters of the shape representation P (the contour 
surface with curvature domains identified) are the density value a and the reference 
curvature value b. In a more general case, therernay be more numerous parameters, 
for example, if the local curvatures of G(a, K) are compared to an oriented reference 
ellipsoid T, then in addition all the density value a, the three characteristic curvatures 
bl, bE, and b3 (the reciprocals of the half axes of the ellipsoid) may serve as 
parameters [14]. Different patterns on G(a, K), hence different shape representations 
P, can be generated, for example, by mapping the ranges of the differences between 
local canonical curvatures, or the ranges of the local density gradient vector components 
(oriented shape representation) or the ranges of the length of the gradient vector on 
the contour surface G(a, K). The shape group technique can be applied to these 
patterns as well. 

In general, the dynamic shape space D is the product space M ® P, where P 
is a vector space spanned by the parameters p of shape representation P = P(p) [11]. 
(Note that M is not in general a vector space, that justifies the distinction in the 
notation.) The actual shape descriptor W of the shape representation P can be 
chosen as a topological descriptor, for example, as the shape groups [12-14] (homology 
groups of molecular surfaces truncated according to a criterion defined by the 
parameters p of shape representation P = P(p)).  According to the GSTE principle 
(geometrical similarity as topological equivalence [15]), two molecular contour 
surfaces G(a, K) and G'(a', K') are (P, W)-similar if the W descriptors of their 
shape representation P are topologically equivalent. 

For example, if the shape groups of surfaces G are selected as shape descriptors, 

W = g(G, co', h), (1) 

then for each dimension h and type 09' of domains truncated from G (in the typical, 
nondegenerate cases) there is only a finite number of different shape groups within 
the entire dynamic shape space D. This allows one to reduce the continuum problem 
of infinitely many, geometrically different shapes to a finite set of different topological 
shape types zi,(p, vo, 

"t'i,(p, w) = Ti,(p,s(a, ~o',h)). (2) 

If the index i of the ith shape type "ri,(p,g(a, ~',a)) is assigned to the corresponding 
abstract shape group gi(G, co', h), then this latter can be referred to as the ith 
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reference group. The invariance domains Ai.y.(gi(G, to', h)) of each reference group 
within the dynamic shape space D of elements d are defined as 

Aij(gi(G, to', h)) = {d : d ~ D, g(G(d), to', h) = gi(G, co', h)}, (3) 

where index j refers to the j th maximum connected component Aid.(gi(G, to', h)) of 
the dynamic shape space (DSS) invariance set Ai(gi(G, to', h)) of the ith reference 
group gi(G, to', h) of shape type Zi.(t',s(C.o~',h)): 

Ai(gi(G, co', h)) = U Aij, (gi(G, o9', h)). (4) 
J 

The pair composed from a given shape group gi(G, to', h) and its invariance set 
Ai(gi(G, to', h)) within the dynamic shape space D is regarded as the dynamic shape 
group: 

(g i ,  Ai)(G,to',h) = (gi( G, to', h), Ai(gi(G, to', h))). (5) 

The shape invariance domains Ai(gi(G, to', h)) of the dynamic shape space 
D provide a characterization of the dynamic shape properties of molecular conformations 
and arrangements. In the present study, we shall approach the problem of dynamic 
shape of molecules from a different perspective; we shall follow a procedure that 
is formally the inverse of the above technique. Instead of defining domains in the 
dynamic shape space D (hence, for any fixed parameter p, shape invariance domains 
in the nuclear configuration space M) in terms of families of 3D objects, we shall 
base our method on domains in the nuclear configuration space as tools to define 
various 3D objects. The topological description of these 3D objects will provide the 
means to characterize the dynamic shape properties of all configurations belonging 
to the given configuration space domain. 

. Unconstrained and accessibility constrained external envelope and internal 
core surfaces of molecular contour surfaces for families of nuclear configurations 

Consider a subset F of the nuclear configuration space, F c M. At this point, 
we shall not make any restriction of F; however, it is useful to select a potential 
energy hypersurface E(K) above M and think of F either as a connected level set 
for some energy bound A, or as a catchment region representing a stable molecular 
species of the corresponding electronic state [16]. Next, consider a molecular contour 
surface G, for example, an electrostatic isopotential surface or an isodensity contour 
surface G(a, K), or a fused sphere van der Waals surface (VDWS) for a selected 
family of atomic radii. For illustration, we shall explicitly discuss the case of 
isodensity contours G(a, K); however, the general treatment is equally applicable 
for any closed molecular surface, where the parameter a defining the contour for 
a given nuclear configuration K can be a single scalar or it can represent a vector 
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a = {al, a2 . . . . .  ak} containing various specifications for the surface (for example, 
the set {al, a2 . . . . .  ak} of VDW atomic radii). 

We define six 3D bodies, BUe'e(a, F), BUC'i(a, F), Bae'e(a, F), Bae'i(a, F), 
B~'e(a, F), and BS~e'i(a, F), and their boundary surfaces Guc'e(a, F), Guc'i(a, F), 
G~c'e(a, F), G~C'i(a, F), GSaC'e(a, F), and GS~C'i(a, F), respectively. The first of these 
surfaces, the unconstrained exterior envelope surface GUC'e(a, F), is the boundary 
surface of the 3D body 

BUC'e(a, F) = min{B : VK EF, G(a, K) c B}, (6) 

GUt'S(a, F) = A BUC'e(a, F), (7) 

whereas the unconstrained interior core surface G uc'i(a, F) is the boundary surface 
of the 3D body 

Bue'i(a, F) = max{B : VK EF, B c B(a, K)}, 

Guc'i(a, F) = A Bue'i(a, F). 

(8) 

(9) 

Here, as well as in the following expressions, min and max refer to minimum and 
maximum 3D volumes V(B) of set B, where the B(a, K) bodies and their respective 
boundary surfaces G(a, K) are taken for all nuclear configurations within domain 
F, and the symbol A denotes the boundary operation. 

The G(a, K) contours for all nuclear configurations of domain F fit within 
the unconstrained exterior envelope surface GUC'e(a, F). Nevertheless, it is possible 
that along a path p of a configuration change within F the G(a, K1) and G(a, K2) 
contours of two configurations K1 and K2, Which differ only infinitesimally according 
to the metric of the configuration space M, can be enclosed within the minimum 
volume envelope surface Gue'e(a, F) only in very different ways, implying a 
discontinuity in the embedding arrangements as the nuclear configurations K change 
continuously along the path p within domain F. Consequently, it is meaningful to 
consider the following accessibility constraints: 

(i) a restriction that for any two nuclear configurations Kx and K2 of domain F 
there must exist a path p within F such that along p, the contour surface 
G(a, K) can be continuously deformed from G(a, K1) to G(a, K2) within an 
envelope surface Gac'e(a, F), where the superscript ac refers to this accessibility 
constraint. 

A stronger accessibility constraint is given by the following choice: 

(ii) a restriction that for any two nuclear configurations K1 and K2 of domain F 
along all paths p interconnecting K1 and K2 within F, the contour surface 
G(a, K) can be continuously deformed from G(a, K1) to G(a, K2) within an 
envelope surface GSaC'~(a, F), where the superscript sac refers to this strong 
accessibility constraint. 
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One may formulate these constraints by considering continuous functions 

f :  p(K l, K 2) ---> G(S), (10) 

where p(K1, K2) is a path in configuration space from K1 to K 2 and G(S) denotes 
the set of continuous closed 2D surfaces embedded in a subset S of the 3D Euclidean 
space E 3. Then, 

B ac' e(a, F)  

= min {B : VK ~ F, G(a, K) c B ; 

VK 1, K 2 EF, 3p(K 1, K2) c F : 3 f : p(KI, K2) ---> G(F)}, (11) 

and 

Gac'e(a, F) = A Bac'e(a, F) 

Bsae'e(a, F)  

= min{B : VK  EF, G(a,K) c B; 

V K1, K2 ~ F, Vp(K1, K 2) c F : 3 f :  p(K1, K2) ---> G(F)}, 

(12) 

(13) 

Gsae'e(a, F)  = A Bsae'e(a, F). (14) 

The analogous conditions for the interior core surfaces can be formulated by 
requiring that 

(a) the maximal Bac'i(a, F) and BSac'i(a, F) bodies are contained within all 
contour surfaces associated with the configuration space domain F, and that 

(b) between any two configurations K1 and K2 of set F there exists at least 
one path p(K1, K2) (case ac), or all paths p(K1, K2) are such (case sac) that the 
embeddings of the G(a, K) contours along the paths change continuously within the 
complements E3\Bac'i(a, F) and E3kBsae'i(a, F) of the maximal Bae'i(a, F) and 
BSaC'i(a, F) bodies, respectively. That is, none of the contours along continuous 
deformation paths p(K1, K2) has a common point with Bac'i(a, F) and Bsac'i(a, F), 
respectively. 

The following formal definitions can be given for the interior core bodies and 
core surfaces: 

Bae' i( a, F) = max{B : V K E F, B c G( a, K); VK1, K2 EF,  

3p(Kl, K2) c F : 3 f :  p(KI, K2) ---) G(E3kF)}, 

Gac'i(a, F)  = A Bac'i(a, F) 

(15) 

(16) 

and 
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BSac'i(a, F) = max{B : VKEF,  B c G(a, K); VKI,/('2 EF,  

Vp(K1, K2) c F : 3 f :  p(K1, K2) --> G(E3\F)}, 

Gsac'i(a, F) = A Bsac'i(a, F). 

(17) 

(18) 

The unconstrained exterior envelope surfaces GUt'S(a, F) and interior core 
surfaces GUe'i(a, F) provide a description of shape constraints present within the 
chosen configuration domain F. Since within any open subset F of  the nuclear 
configuration space M some configurational variation is allowed, these envelope 
and core surfaces do represent some of the dynamic features of  molecular shape. 
However, in practical applications it is also important to find out whether a given 
configuration change may or may not occur if some shape constraints are imposed; 
for example, this is the case for conformational changes of various biologically 
active molecules within enzyme cavities. Consequently, in such cases the constrained 
external envelope surfaces Ga~'e(a, F) and GSaC'~(a, F) are of more relevance. 

. Some properties of envelope and core surfaces of families of nuclear 
configurations 

The following relations among the supporting bodies of various exterior 
envelope surfaces are simple consequences of their definitions: 

BUC'e(a, F) c BaC'e(a, F) c Bsac'e(a, F). (19) 

Similarly, for the supporting bodies of  the internal core surfaces, the relations 

Buc'i(a, F) D Bac'i(a, F) D Bsac'i(a, F) (20) 

hold, where the sense of the inclusion relations is reversed. 
Since for any domain F 

Buc'i(a, F) c Buc'i(a, F) (21) 

also holds, one may combine the above two sequences (19) and (20) of inclusion 
relations into a single sequence 

Bsae'i(a, F) c Bac'i(a, F) c Buc'i(a, F) c BUC'e(a, F) 

c Bac'e(a, F) c Bsac'e(a, F). (22) 

If for two conformational domains F1 and F 2 the condition 

F 1 c F2 (23) 
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applies, then 

BUC'e(a, El) c BUC'e(a, F2), 

BaC'e(a, F1) c BaC'e(a, F2), 

BSaC'e(a, El) c BSaC'e(a, F2), 

Buc'i(a, El) ~ Buc, i(a, F2), 

Bac'i(a, El) D Bac'i(a, F2), 

Bsac'i(a, El) ~ Bsac, i(a, F2) 

follow, again, as simple consequences of the definitions. 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

In the special case of isodensity contours G(a, K), their supporting bodies 
B(a, K) satisfy the relation 

B (al, K) c B (a2, K) (30) 

for any fixed nuclear configuration K, if 

al > a2. (31) 

Consequently, if a 1 > a2, then the following relations also hold for any configuration 
space domain F: 

Buc'e(a 1, F) c BUC'e(a2, F), (32) 

Bac'e(a 1, F) c Bac'e(a2, F), (33) 

Bsac'e(a 1, F) c BSaC'e(a2, F), (34) 

Buc, i(a 1, F) c Buc'i(a2, F), (35) 

Bac'i(a 1, F) c Bae'i(a2, F), (36) 

Bsac'i(a 1, F) c BSaC'i(a2, F). (37) 

One should notice that for configuration space inclusion relations of configuration 
families F, the supporting bodies of envelope surfaces and core surfaces have 
inclusion relations of opposite directions (relations (24)-(26) and (27)-(29)), whereas 
for charge density changes in a contour value a, the supporting bodies of envelope 
surfaces and core surfaces, the sense of inclusion relations agree ((32)-(37)). 
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For simultaneous variations in the size of configuration domain F, in the 
value(s) of contour parameter(s) a, and in the accessibility constraints uc, ac, and 
sac, one can use a simple combination of the above families of inclusion relations. 

. The shape and size of molecular configuration of a family F:  envelope shapes 
and core shapes, envelope sizes and core sizes 

The above sets provide the means for the introduction of the concept of the 
shape of a family F of molecular configurations. 

DEFINITION 1 

The shapes of envelope surfaces GUC'e(a, F), Gac'e(a, F), and Gsac'e(a, F) are 
the unconstrained, accessibility constrained and strong accessibility constrained 
envelope shapes, respectively, of the configurational family F. 

If no further qualification is given, the term "envelope shape of F"  refers to 
the unconstrained case. 

DEFINITION 2 

The shapes of core surfaces Guc'i(a, F), Gae'i(a, F), and Gsae'i(a, F) are the 
unconstrained, accessibility constrained and strong accessibility constrained core 
shapes, respectively, of the configurational family F. 

If no further qualification is given, the term "core shape of F"  refers to the 
unconstrained case. 

The shape characterization of unconstrained and constrained envelope shapes 
and the core shapes of configurational domains F can be carried out by the standard 
shape group methods [12-14] using local curvature properties. The pattern of local 
curvature domains (e.g. those of locally convex, concave, or saddle-type domains 
relative to a reference curvature b) of various envelope surfaces Guc'e(a, F), G~:'e(a, F), 
GSaC'e(a, F) and core surfaces Guc'i(a, F), Gac'i(a, F), and Gsac'i(a, F) can be described 
topologically by their shape groups (homology groups of objects obtained from 
these surfaces after cutting our domains of a given local curvature type). Since the 
surfaces characterize the shapes of an entire configurational domain F of nuclear 
arrangements, this approach allows one to use methods originally developed for 
static shape characterization also for dynamic shape characterization of molecules, 
providing an alternative to the earlier dynamic shape space technique [11]. 

For a given configurational domain F, the difference between the envelope 
shape and the core shape is of particular importance. These differences can be 
represented by the hollow bodies 

BUC'd(a, F) = Buc'e(a, F)\BUC'i(a, F), (38) 
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and 

Bae'd(a, F) = Bae'e(a, F)\Bae'i(a, F), 

Bsae'd(a, F)  = B'aC'C(a, F)XBSae'i(a, F), 

(39) 

(40) 

for the three cases uc, ac, and sac, respectively. 
The above bodies, together with those defined in eqs. (6), (8), (11), (13), 

(15), and (17), provide the means for the introduction of the concept of the envelope 
size, core size, and size range of the family F of molecular configurations (with 
respect to the given shape representation P). The volumes of the various interior 
and exterior bodies satisfy the following relations: 

V(BSae'i(a, F)) <- V(Bae'i(a, F)) <- V(BUe'i(a, F)) <_ V(BUC'e(a, F)) 

<_ V(Bae'e(a, V)) <- V(BSae'C(a, V)), 

and can be used for size characterization. The quantities 

(41) 

and 

AVUe(a, F)) = V(BUe'd(a, F))/V(BUe'e(a, F)), 

AVae(a, F)) = V(Bae'd(a, F))/V(Bae'e(a, F)) 

AVSaC(a, F)) = V(BSaC'd(a, V))/V(BSa~'e(a, F)) 

(42) 

(43) 

(44) 

characterize the unconstrained, accessibility constrains, and strong accessibility 
constrained size range of the family F of molecular configurations, where the 
symbol A stands for "difference", and is not to be confused with the boundary 
operation. 

One may consider an entire range of shape representations P(p) for a range 
R of choices for parameters p. For example, one may consider an interval R = [al, a2] 
of electron density values and the associated family of isodensity contours G(a, K) 
for any fixed nuclear configuration K. If the maximum and minimum volumes in 
definitions (6), (8), (11), (13), (15), and (17) are selected by considering all choices 
of configurations from F and all contour density values within the range [al, a2], 
then by repeating the above treatment one obtains a dynamic shape description for 
the entire range [al, a2] of isodensity surfaces. For example, definition (6) can be 
extended for a range [al, a2] of electronic density values, leading to a formal 3D 
body, 

BUC'e([al, a2], F) = min {B : VK E F, Va E [al, a2], G(a, K) c B }, (45) 

and its boundary 

Guc'e([al, a2], F) = A BUC'e([al, a2], F), (46) 
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representing an unconstrained envelope surface for configuration family F and 
electron density range [al, a2]. The analogous treatment applies to all other bodies, 
surfaces, and volumes discussed above. 

5. Comments on shapes and sizes of special molecular configuration families F 

If a potential energy hypersurface E(K) is selected, then one important choice 
for family F of nuclear configurations is that of a connected level set F(A) of the 
space M, that is, a connected subset of configurations which fall below the energy 
bound A. In this case, the dependence of shapes and sizes of various envelopes and 
cores on the energy bound A is of particular interest. If the change of the energy 
bound is confined between two successive critical levels [17] of the chosen potential 
energy hypersurface E(K), then one expects a continuous change with A in all ac 
and sac properties defined above; however, the change in the uc properties is not 
necessarily continuous even between critical levels. At a critical energy level, all 
uc, ac, and sac properties may change discontinuously. By regarding a given ac or 
sac property, and by considering all those objects equivalent which interconvert into 
one another continuously, one obtains a set of equivalence classes. A monotonic 
change of the energy bound A implies a partial order for these equivalence classes 
along the given potential energy hypersurface E(K), where this partial order leads 
to a semilattice structure analogous to those of the fundamental groups of reaction 
mechanisms in level sets of E(K) [ 18, 19]. This connection between algebraic structures 
for reactivity and algebraic structures for dynamic shape variations will be described 
in detail elsewhere [20]. 

Another natural choice for F is that of various catchment regions C(A, i) of 
the potential energy hypersurface E(K) ([21 ], see also ref. [16]). Within the Topology 
Program [16] of reinterpretation of fundamental chemical concepts in terms of 
topology, chemical species are represented by catchment regions [21]. Hence, if one 
makes the choice 

F = C(A, i) (47) 

for a selected catchment region (where ~ is the index of the unique critical point 
in C(;I,, i) and i is a serial index), then the associated uc, ac, and sac envelope and 
core shapes and sizes are regarded as those of the chemical species C(~, i), with 
respect to the given shape representation P. In particular, if the catchment region 
is that of a potential energy minimum, F = C(0, i), then one obtains the envelope 
and core shapes and the envelope and core sizes of a stable molecule C(0, i), with 
respect to the given shape representation P. Similarly, if the catchment region is that 
of a potential energy saddle point of index 1, F = C(1, i), then one obtains the 
envelope and core shapes and the envelope and core sizes of a transition structure 
C(1, i) (transition "state", according to a common but misleading terminology). 
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A global analysis of molecular symmetry [22], in particular that of molecular 
chirality, can be based on the configuration space distribution of nuclear arrangements 
of specified symmetry properties. In particular, chiral nuclear arrangements are 
found in various chirality domains of space M, separated by subsets of achiral 
nuclear configurations [23]. A dynamic shape characterization of chiral nuclear 
arrangements can be given by taking F as one of the chirality domains, or as an 
energy constrained subset of a chirality domain. The latter approach can be regarded 
as a combination of the energy level set and chirality domain constraints. 

The dynamic shape and dynamic size properties of arrangements occurring 
in chemical reactions can also be characterized by the methods described above. Set 
F can be chosen as the family of nuclear configurations occurring along a reaction 
channel. Many approximations are possible; for example, one may take F as a 
(3N - 6)-dimensional tube of nuclear configurations defined by the following condition: 
F contains each configuration K along a formal reaction path p and all additional 
configurations K '  which are A-accessible from at least one configuration K of path 
p, where A-accessibility means access that requires an energy change less than A. 
The extreme choice of A = 0 gives the formal reaction path p itself. 

An alternative choice for F is the union of the catchment regions of all stable 
species and transition structures participating in the reaction 

F = k.) C(1, i), (48) 
ier 

where r is the family of indices involved in the reaction. This, as well as the 
previous choices, provide a systematic approach for the analysis of dynamic molecular 
shape and size variations in chemical reactions. 
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